
Make Plone Fast!

Use CacheFu to Make Your Site Fly

Geoff Davis
geoff@geoffdavis.net

Plone Symposium, 2006

Overview

● Big Picture
– The Problem: Plone is slow
– The Solution: CacheFu

● How does CacheFu work?
– Key concepts
– Gory details

● Squid

How fast is your site?

● Simplest measurement: Apache benchmark (ab)
– comes with Apache 2.0 distribution
– simulates lots of users hitting a single page sequentially

and / or simultaneously
– measures pages served / second

● Limitations of ab
– doesn't load associated images, CSS, JS

● JS and CSS matter a lot! ~50% of your bandwidth

– doesn't know about browser caching, etc

● Better benchmarks feasible with Selenium??

How fast is Plone out of the box?

● ab = Apache benchmark
– part of the Apache 2.0 distribution

● ab -n 50 http://localhost:8080/myplonesite/
– 50 requests for front page
– Key number to look for is “Requests per

second:” (average; median is better)

Using ab

● Tips:
– Make sure you add the trailing “/” to the URL

– Be sure your site has “warmed up” before

running

● Lots of one-time startup expenses

–ZODB needs to load objects into memory

–pages templates need to be parsed, etc

● Run twice and look only at second result

– Make sure Zope is not in debug mode

Results

● ~3.5 requests/sec on my laptop
– SLOW!

● Front page is only part of the problem:
– also have ~200K of CSS / JS / images!

● Quick tip: If you have an English-only site, delete
PlacelessTranslationService
– Boosts speed to 4 req/sec (~15%)

CacheFu

● Download CacheFu
– Copy 4 packages to my Products directory:

● CacheSetup
● PageCacheManager
● PolicyHTTPCacheManager
● CMFSquidTool

– Install CacheSetup with QuickInstaller
● Repeat the ab test:

– Get ~35 req/second
– ~10x faster; also improves JS, CSS, and images

CacheFu + squid

● Set up squid
– Install squid
– Set up the squid.conf that ships with CacheFu
– Adjust squid settings in the cache settings portlet

● Run ab again
– Get 150 req/sec
– ~40x faster

Transparency

● CacheFu is almost completely transparent
– CacheFu caches content views (not everything)
– Big problem: cache needs to be purged when content changes
– CacheFu takes care of this for you

● When you update your content, changes will
appear on your site immediately!

– A few exceptions; we will discuss these
– Need to understand how things work to make this work for you
– Very straightforward in most cases

How does CacheFu work?

● CacheFu is pretty complicated
– Ideas are straightforward
– Infrastructure in Zope for implementing them is not
– Lots of partial solutions that step on each other
– Biggest value-add: (relatively) seamless integration

● Not a perfect solution
● Hopefully will provide a better way to think about

the problem in Zope 3

Why is Plone slow?

● Multiple sources

● In order of decreasing importance:
– Page rendering

– ZServer

– Network latency

– Connection setup times

● We will attack each problem separately
– Multiple approaches to some problems

Speeding things up

● Page Rendering
– Lots of benchmarking

– Biggest time sink is TAL rendering

– Not much we can do about it

– EXCEPT not render

● Cache pages to reduce rendering time
– Several different ways

Speeding things up

● ZServer sluggishness
– Don't use ZServer when we don't have to

● ZServer is smart
– Don't need brains to serve up static content

● Set up fast proxy cache (squid)
– Proxy cache handles static stuff

– ZServer handles things that require some smarts

Speeding things up

● Network latency
– Tell browsers not to ask for things they don't need

● Caching!

– Don't re-send pages when you don't have to
● More caching!

– Compress content
● gzip HTML pages

● JS / CSS whitespace removal related tricks

Speeding things up

● Connection setup times
– Combine multiple CSS files into one

– Combine multiple JS files into one

– Prevent unnecessary requests
● Cache as much as possible (but no more) in the client

Caching, Caching, and more
Caching

● Common theme in all approaches: Cache!

● Several different types of caching
– Cache in server memory

– Cache in proxy cache

– Cache in client's browser
● “Unconditional” client-side caching

– Browser always uses local file

● “Conditional” client-side caching (NEW!)
– Browser checks with server before using local file

More techniques

Will touch on a few more approaches, but not in depth
● Tune the ZODB/ZEO object caches

– speeds up Zserver
● Load balancing

– reduces page rendering times under load
● Optimize your code

– reduces page rendering time
● Cache intermediate code results

– reduces page rendering time

Strategy 1: Cache static content in
browser
● When user visits site, content stored in their

browser's cache
– HTTP headers tell how long to cache

● Subsequent requests pulled from local cache rather
than server

● Most useful for static content that is viewed
frequently
– Images, CSS, JS

HTTP headers

● Understand HTTP headers to do caching right
● Good tutorial at

http://www.web-caching.com/mnot_tutorial/

HTTP header basics
● Will use both HTTP 1.0 and 1.1 headers in case

ancient clients visit

● HTTP 1.0 headers
– Expires: [date and time]

● Browser will cache if date is in the future

– Last-Modified: [date and time]
● Complicated heuristics for image caching based on Last-

Modified header absent more explicit info
● The longer your image has been unchanged, the longer the

browser will cache it

– Headache: both require correct client clock

HTTP header basics

● HTTP 1.1: much more fine-grained control
– Cache-Control: [tons of options]

● Most important for our purposes:
– max-age=N

● browser will cache your content for N seconds

● preferable to Expires because makes no assumptions about client

clock

– public

● tells browser OK to cache even when it might not otherwise

● Cache-Control options not to include (for now):
– no-cache, no-store, must-revalidate, private

Setting HTTP headers

● AcceleratedHTTPCacheManager
– Part of CMF - sets cache headers for skin elements
– Used by Plone OOTB to set headers for static stuff
– HTTPCache
– Associate template / image / file with HTTPCache

using metadata
– cache=HTTPCache

● One of the 10 places that headers get tweaked

CacheFu and headers

● CacheFu consolidates header-setting
– Most headers set in CachingPolicyManager

– Allows for much finer-grained control
● We will need it!

● CacheFu replaces HTTPCache with a
PolicyHTTPCacheManager
– Farms HTTPCache's old job out to

CachingPolicyManager
● Sets better default cache timeout

– 24 hours instead of 1 hour

CachingPolicyManager

● Take a look in ZMI: caching_policy_manager
– Details: Definitive Guide to Plone, Chapter 14

– http://docs.neuroinf.de/PloneBook/ch14.rst
● Container full of header setting policies

– Each policy has a predicate

– Pages to be rendered walk through policies until they

hit a true predicate, then headers are set
● You will not need to look in here much

– Most of policy-choosing logic is elsewhere

Caching Policy
● CacheFu assigns the cache_in_browser policy to

items associated with HTTPCache

● cache_in_browser policy:
– key items:

● last-modified = python:object.modified()

● max-age = 86400
– 86400 secs = 24 hours

● s-max-age = 86400
– instructions to squid

● public
– Use cached items even in situations when maybe not OK (e.g. when

authorized, possibly with https connections, etc)

Caching in Browser

● cache_in_browser policy gives us the least control
– Once something is in the browser, it is stuck there

– Browser won't check for anything newer for 24 hours

● Takes a big load off server, though
– Safe to use this policy for things that rarely change

– If you plan to change stuff, consider:
● lower max-age time limit the day before

● increase again when you are done

Testing the headers

● LiveHTTPHeaders plug-in for FireFox
– Your new best friend

● Invaluable for testing caching
● Shows all request and response headers

● Tip: clear your browser cache manually before
starting a session

● Let's take a look

ResourceRegistries

● Most of the content associated with HTTPCache is
images

● JS and CSS used to be, but no more

● ResourceRegistries are the new way to go
– In the ZMI:

● portal_css

● portal_javascripts

– Let's take a look

ResourceRegistries

● Look at portal_css
● Lots of CSS files registered
● Line in main_template pulls in all registered CSS

in the page <head> section
● Options:

– Enabled: lets you turn on/off file inclusion

– TAL condition: lets you conditionally include

– Merging allowed: can file be merged?

– Caching allowed: used for RR's internal caching

(which we bypass)

ResourceRegistries

● RR serves up a set of merged CSS files with URLs
like this:
– portal_css/Default%20Skin/ploneStyles1234.css

– Skin name is in the URL so that different skins have

distinct URLS
● Avoids user retrieving cached css file for one skin when

viewing a different skin

– Number in filename is version number
● every time you hit Save button, version number changes

ResourceRegistries

● Version number is VERY IMPORTANT
– Means you can cache stuff forever in browser

– When you change your CSS, hit Save
● Merged filename changes

● Pages now point to new CSS file; user won't see the old one

● CSS and JS are ~1/2 of bandwidth on a typical site
– If you have repeat visitors, long-time caching is great

ResourceRegistries

● Added bonus:
– RR 1.3 does safe CSS and JS compression

– (Plone 2.1.2 ships with RR 1.2)

● Ideal solution: serve gzipped CSS / JS
– Buggy in many browsers, unfortunately

– RR instead strips whitespace, other tricks
● “Safe” compression cuts CSS and JS by about 25% each

● More aggressive compression cuts JS by ~50%

– RR does this on the fly each request
● CacheFu caches the results so RR only compresses once

ResourceRegistries

● CacheFu bypasses RR's caching machinery
– Routes JS and CSS through caching_policy_manager

● Policy used is cache_file_forever
– CSS and JS can live on the browser for a year

– Really important to remember to Save!

ResourceRegistries

● Tips:
– Files have to be mergeable for renaming to work

– Use debug mode for development and debugging
● Files don't get merged or cached

– Pages cached in squid may refer to the old CSS / JS

files
● If you make big CSS/JS changes and want them to appear

immediately, you will also have to purge squid

● purging script (purgesquid) is supplied

Quick Recap

● Step 1: Cache your static content in the browser

– Associate files and images in your skins with

HTTPCache
● Use cache=HTTPCache in the .metadata file

● CacheFu will do the rest

– Register your CSS and JS with portal_css/portal_js
● Make them mergeable

● Save when css/js change

● CacheFu will take care of caching

Quick Recap

● Keep limitations in mind
– Only helps if people load the URL more than once!

● Great for CSS / JS / images that appear on all pages

– Once it's on the browser, can't change until it expires
● Unless you are using something cool like RR

Proxy cache

● Benefit of browser cache:
– Every request served by cache is one less request

served by ZServer

● Drawback of browser cache:
– Can't invalidate stale content

● Alternative for content that changes more
frequently: use a proxy cache

Strategy 2: Proxy Caching

● Idea: put a fast but dumb proxy cache in front of
Zope

● Proxy cache serves up (static) content, keeps load
off Zope

● Zope can tell proxy cache when content expires so
you don't serve up stale content

Proxy cache
● Because it is server side, cached content is shared

– Browser cache only helps if 1 client requests same resource

twice

– Proxy cache helps if 2 (anonymous) people request same

thing even if they are different people

– Much less help when content is personalized, though

● Our strategy: cache anonymous content

● Possible to expand if content is personalized based on,

say, roles instead of username

● Will talk more about personalized content later

Plone and content caching

● By default, Plone sends no Cache-Control header,
which means that pages won't be cached in general

● Anything using main_template has headers set in
global_cache_headers.pt
– In CMFPlone/skins/plone_templates

● contains Cache-Control: no-cache

– CacheFu overrides, uses caching_policy_manager
instead

Plone and content caching

● Want to override default headers for a single page?
– Simplest way: call request.RESPONSE.setHeader in

body of template.
● Overrides previous header, affects only template in question.

● May get stomped by caching_policy_manager

– Harder way: create a caching_policy_manager policy
● (You won't need to do this in general)

Content cache headers

● Goal is to cache anonymous content views
● Not much point caching personalized views

– Not enough hits per cached page to justify

– Fills up the cache

● How do we control content cache headers?
– With a caching policy, of course

– Content views will use 2 different policies
● cache_in_squid if you are anonymous

● cache_in_memory if you are authenticated

Content cache policies

● Leave content in squid; purge as needed
● cache_in_squid

– max-age = 0
● Don't cache in the browser!

– s-max-age = 86400
● Cache in squid for up to 24 hours

● Keep out of squid
● cache_in_memory

– Don't cache in browser or squid

– max-age = 0, s-max-age = 0

How policies are assigned

● How does Zope know what caching policies to
apply?
– Cache setup tool controls everything: The One Ring

● Integrates the 7 different products

– Nice portlet – let's look
● Site setup -> Cache Configuration Tool

– Main tab controls relationship with squid
● Talk about that later

– Next tabs control policy assignments

Cache configuration tool

● When an object looks for headers, it gets sent to
CacheSetup

● CacheSetup walks through its own policies to
figure out what the appropriate caching policy is

● HTTPCache content
– Assigns all content associated with HTTPCache

– Both anonymous and authenticated users get “Cache in

browser” policy

– Hopefully reasonably self-explanatory

Cache configuration tool

● Next tab: Plone content types
● Have an object + template in hand. Does the policy

apply?
– Look at content type – is it in the list?

– Look at template
● Is it a default view for the object?

● Is it on the list of templates?

– Look at request – is there anything that should stop

caching?

Cache configuration tool

● Ok, so the configuration policy applies, now what?
● Need to figure out a caching policy
● 2 methods:

– Use policy specified for anonymous or authenticated

users

– Get the policy ID from an external script
● For default views of main Plone content objects:

– cache in squid for anonymous users

– cache in memory for authenticated users

Cache configuration tool

● For default views of main Plone container objects:
– cache in memory for anonymous and authenticated

users
● Reason:

– Can purge content objects when they change, BUT

– Container views change when any of their contents

change
● So either all content has to purge parent OR

● Just cache in RAM and work out purging another way (will

discuss later)

Caching Your Views

● Recommended method:
– Add a new assignment policy

● In portal_cache_settings, add a new content policy
– Select your content types

– Indicate that default views should be cached

– Choose type of caching policy for anonymous and

authenticated

– Configure ETags (will discuss later – default Plone

Etags are good starting point)

Purging

● What happens when content changes?
– CMFSquidTool purges the object

● CacheSetup configures squidtool so you don't have to

– Monkey patches index, unindex, reindex, etc

– When an object is created / modified / deleted, cache is

purged
● Cache configuration tool figures out the right

pages to purge
– Typically just the views and templates specified

– If you want extras, you can add a script

Purging

● Plone content types
– uses script to purge extra pages

● Why?
– If you modify the file “myfile”, need to purge:

● default views: myfile, myfile/, myfile/view

● also myfile/download

– If you modify the image “myimg”, need to purge
● default views: myimg, myimg/, myimg/view

● also myimg/image_thumbnail, etc

● Script supplies the extra /download,
image_thumbnail, etc

Proxy Caches

● Squid
– free, open source; runs on Linux, Windows, OSX
– http://www.squid-cache.org
– Super fast (~150 requests/second on mid-range box)

● Some (but probably not all) of CacheFu strategy
should work with IIS + Enfold Enterprise Proxy
– http://www.enfoldsystems.com/Products/EEP

Why not Apache?
● Apache + mod_cache

– Lots of documentation about using Apache for caching

● Problem: mod_cache doesn’t support purging
– No easy way to delete stale pages from cache

● Should be possible to modify CacheFu to get some (but not full)

benefit from Apache

– 1-2 days work
– Sponsorship welcome!

Using Squid

● Excellent documentation
available

● (Only need to read a few
chapters, not whole
book)

Using Squid

● Squid has a reputation of being complex

● Problem is that default squid.conf is 3500 lines
– 99% documentation
– most options don't apply

● CacheFu contains sample squid.conf
– 137 lines (including comments)
– straightforward to configure

● CacheFu has sample configurations for
– squid by itself

– squid behind Apache
● useful if you need to wire together different web apps and

want to use mod_rewrite, etc

– setup is similar

● Pick the appropriate setup

Configuring squid

● Go to the directory for the configuration you have
chosen
– squid_direct or squid_behind_apache

● Edit squid.conf and follow the instructions
– Walkthrough

● Edit redirector_class.py and set up the redirection
rules
– Syntax is like mod_rewrite for Apache

– Walkthrough

Setting up squid

● Copy everything (squid.conf, all .py files) to
/etc/squid

● Fire up squid!

Setting up squid

● Tips:
– Check file permissions

● squid must have read access to squid.conf, iRedirector.py,

squidAcl.py, and redirector_class.py

● squid must have execute access to iRedirectory.py and

squidAcl.py

– squidAcl.py and iRedirectory.py get called directly
● First line is #!/usr/local/bin/python -Ou

● If your python is not at /usr/local/bin/python, change the path

to python in the first lines of these files

● Make sure you can run both of these from the command line

without getting an exception

Setting up squid

● More tips:
– While debugging your squid configuration, run squid

from the command line and echo errors to the console:
● /usr/sbin/squid -d1

– To stop squid from the command line, use
● /usr/sbin/squid -k kill

– To reconfigure squid after modifying squid.conf, use:
● /usr/sbin/squid -k reconfigure

Setting up squid

● More tips:
– Look at squid's logs if you have problems

● /var/log/squid/cache.log – squid messages about its internal

state
– If you notice all squid's external processes are dying, it probably

means that you have a problem with your python path in

iRedirector.py or squidAcl.py

– Try running these python files from the command line to see what's

going on. Use “./iRedirector.py”, NOT “python iRedirector.py”

● /var/log/squid/access.log – squid messages about cache hits

and misses

Setting up squid

● Tips:
– iRedirector.py does URL rewriting

– Uses redirector_class.py as a helper
● Both iRedirector.py and redirector.py do debug logging

● Edit them and replace “debug = 0” with “debug = 1” if you

have problems

Setting up squid

● Once you have squid working, It Just Works
● Setup can be a headache the first time

– Tips should help a lot

Configuring CacheFu for Squid
● Once squid runs, tell Zope about it
● Go to first pane of Cache configuration tool

– Indicate URLs of your site
● include all URLs, e.g. http://www.mysite.com,

https://www.mysite.com, http://mysite.com, etc

– If squid behind apache, URL of squid (typically

http://localhost:3128)

Vary header and gzipping

● Set the Vary header (default should be OK)
– Vary header tells squid to store different versions of

content depending on the values of the headers

specified

– Vary: Accept-Encoding for gzip
● One version for browsers that accept gzipped content

● One version for those that don't

● Select gzipping method (default is recommended)
– Gzipping cuts down network latency

– Content cached in gzipped form so only gzip once

Demo

● Let's try it out!

● Tips:
– Use LiveHTTPHeaders to see if getting cache hits

– Look at headers:
● X-Cache: HIT or X-Cache: MISS

– If you don't see any HITs, clear your browser cache

manually and try again

– If that fails, something may be wrong

Strategy 3: Load Balancing

● Zope Enterprise Objects let you do load balancing
– ZEO server = essentially an object database
– ZEO client executes your python scripts, serves up

your content, etc
– ZEO comes with Zope

● Set up multiple ZEO clients on multiple machines
or multiple processors (single instance of Zope
won't take much advantage of multiple processors)

Setting up ZEO

● You can transform a Zope site into a ZEO site
using the mkzeoinstance.py script in ~Zope/bin

● Change a few lines in ~instance/etc/zope.conf and
~instance/etc/zeo.conf and you are good to go

● See Definitive Guide to Plone, Chapter 14
– http://docs.neuroinf.de/PloneBook/ch14.rst

Squid + ZEO

● Main idea: give your proxy cache lots of places
from which to get content it can't serve

● Squid can in theory take care of load balancing
● I would use pound instead

– pound = load-balancing proxy designed for Zope
– http://www.apsis.ch/pound/
– Put pound between squid and ZEO clients
– Big advantage if you use sessions – pound keeps client

talking to same back-end server

Resource requirements
● My site: 20K page views/day

– 1 squid instance, 1 ZEO client

– 2.4 GHz P4 + 1G RAM
● plone.org:

– 1 squid instance + 2 ZEO clients

– 2x 3GHz Xeon box with 2 GB of RAM
● Bulk of load is from authenticated clients
● Don't need that much power, especially if most

clients are anonymous
● squid is very efficient
● Main requirement is lots of memory for Zope

Strategy 4: Use Entity Tags

● ETags let us do smart browser caching
● The idea:

– ETag = arbitrary string, should have the property:
● If I have 2 files with same ETag, files should be the same

– Send an ETag to browser with a page

– Browser caches the page

– Before rendering from cache, browser sends ETag of

cached page to server

– Server responds with Status 304 + no page (meaning

cached stuff OK) or Status 200 + new page

ETags

● What are good ETags?
– Depends on what we are serving up

● Example: Images
– 2 images with same URL and same modification time

are probably the same

– ETag for images, files can just be last modified time

– ETags not really useful for files and images, since we

can do a conditional request based on modification

time

ETags

● Example: document
– ETag for document should include modification time

● That lets us distinguish different versions of the doc

– Should depend on authenticated member
● Since we have personalization in document view

– Should depend on state of the navtree, other portlets

Setting ETags

● CacheFu provides an easy way to generate ETags
● Go to policy for Plone content in Cache

configuration portlet
– Look at ETag section

– Ingredients for building an Etag
● Use member ID (personalization)

● Time of last catalog modification (covers age of document +

navtree state)

● REQUEST vars: month, year, orig_query (covers state of

calendar portlet)

● Time out after 3600 secs

ETags

● ETags useful for 2 things
– First, allows for smart conditional browser caching

● If document changes or something in document's containing

folder changes or calendar changes or logged in member

changes, ETag will change

– Second, provides a useful cache key for a RAM cache

PageCacheManager

● PageCacheManager stores full pages + headers in
a memory
– Uses ETags as cache key, so ETag is required

– ETags are set using CachingPolicyManager policy

● If template uses Cache configuration tool to
generate an ETag and policy is not “Do not cache”

● CacheFu automatically associates templates that
have ETags generated

● Content views automatically cached in memory

PageCacheManager

● Try it out

● Look for X-Pagecache: HIT

Things you should know

● Some things to watch out for when digging deeper
– If browser has a page in hand, will do a conditional

GET
● GET /foo

● If-None-Match: ETAG-OF-PAGE-IN-HAND

● If-Modified-Since: LAST-MOD-OF-PAGE-IN-HAND

– Squid can handle If-Modified-Since but is too dumb to

deal with If-None-Match

– Any requests with an If-None-Match bypass squid
● Code in squidAcl.py is used to do this

More things you should know

● Squid is not typically very useful for caching
content from authenticated users
– squidAcl.py causes squid to be bypassed if the user is

authenticated
● Squid IS useful for caching images and files even

if user is authenticated
– Code in squid.conf that tells squid to always use the

cache for files ending with .js, .css, .jpg, etc

More things you should know

● Images and Files get routed through
CachingPolicyManager through a nasty method
– Monkey patch associates them with DefaultCache

– DefaultCache is an HTTPPolicyCacheManager
● Existing caching policies assume that images and

files do not have any security on them and are the
same for authenticated and anonymous users
– May be be possible to work around but will require

some effort

Strategy 5: Optimize Your Code

● Don't guess about what to optimize – use a profiler
● Several available

– Zope Profiler:
● http://www.dieter.handshake.de/pyprojects/zope/

– Call Profiler:
● http://zope.org/Members/richard/CallProfiler

– Page Template Profiler:
● http://zope.org/Members/guido_w/PTProfiler

● Identify and focus on slowest macros / calls

Code Optimization: Example

● Suppose you find that a portlet is your bottleneck
– Calendar portlet, for example, is pretty expensive

● How to fix?
● Idea: don't update calendar portlet every hit

– Update, say, every hour
– Cache the result in memory
– Serve up the cached result

● Similar idea applies to other possible bottlenecks:
– Cache the most expensive pieces of your pages

RAMCacheManager

● RAMCacheManager is a standard Zope product
● Caches results of associated templates / scripts in

memory
● Caveats:

– Can't cache persistent objects
– Can't cache macros

● Calendar portlet is a macro – how can we cache it?

Trick: Caching Macro Output

● Idea:
– create a template that renders the macro
– output of template is snippet of HTML, i.e. a string
– cache output of the template

Caching the Calendar

● Step 1: Create a template called cache_calendar.pt:
<metal:macro use-macro=”here/portlet_calendar/macros/portlet” />

● Step 2: In the ZMI, add a RAMCacheManager to
your site root

● Step 3: in the RAMCacheManager, set the
REQUEST variables to
AUTHENTICATED_USER, leave the others as
defaults (this caches one calendar per user)

Caching the Calendar
● Step 4: Associate cache_calendar.pt with your new

RAMCacheManager. Output of cache_calendar.pt
will now be cached for 1 hour.

● Step 5: In your site's properties tab, replace
here/portlet_calendar/macros/portlet with
here/cache_calendar

● Voila!

● Use RAMCacheManager to cache output of slow
scripts, etc.

Future Directions

● Make CacheFu more Apache-friendly
– Should be possible to make CacheFu work without

squid (currently only provides limited benefits)
● General clean-up and polish

– Autogenerate squid config files

– More unit tests

– Minor refactoring for simplification

– Let PageCacheManager use memcached

● Even bigger gains to be had...

Future directions
● Poor man's ESI

– Split out chunks of pages

– Cache them independently

– Insert SSI directives in their place

– Have Apache reassemble chunks
● Header, footer, portlets, personal bar, etc could all

be cached and invalidated separately
● CacheFu speeds up views – this could speed up

everything

● Sponsorship welcomed! geoff@geoffdavis.net

