Best Practices for Development
North American Symposium II

Author: Joel Burton <joel@joelburton.com>
Copyright: Copyright 2006 Joel Burton
Covering: Plone 2.1 and newer


mailto:joel@joelburton.com

CONTENTS CONTENTS
Contents
1 Best Practices for Plone Developmenﬂ 3
11 Introduchon . . ..o oo 4
1.1.1 Handouts and Examples‘ ....................... 4
112 WhyDoWeNeed This? . . . ... ................. 4
113 Safety. . ..o 4
1.14 Documentation . . . . .o covu i 4
115 Re-Usability . . . .. oot e 5
1.1.6  Streamlined Development . . . . ... ............... 5
1.2 ProductS . . v oot e e e 6
1.2.1 Concept . ... ... .. . ... 6
122 Products . . v o vvo e e 6
123 Framework . . ... ... 7
124 Framework: conﬁg.pﬂ ........................ 7
1.25 Framework: content/ . . . . ... ... 7
1.2.6 Framework: skins/ . . .. ... 8
1.2.7 Framework: EXtensions . . . . . oo vvv oo 8
1.2.8  Framework: doc/ . . . o v oot 8
1.2.9 Framework: VERSIONAXE . « .« o v o vooeee e e e e 8
1.2.10 Framework: __init .pV‘ ....................... 9
1.2.11 Site Product OVerview . . . . . o oo v oo 9
1212 ArchGenXML . . . . .o ov i 9
1.2.13 UML . . . . e e e e 10
1214 ConvertingUML . . . ... ... ... 10
1215 ArchGenXMLTIPS . . . o oo oo 10
1216 SKEletOr . . oo oot 11
1.3 Filesystem SKinS . . . . o e 12
1.3.1 Through the Web Editing . . . ................... 12
132  More Web Editing Problems . . . . .. ..... ... .. ... .. 12
1.3.3  File-System Stored SKins . . . . . . . o ov i 13
1.34  Filenames Matter . . . . . v oo oo e 14




CONTENTS CONTENTS
135 Sample foo_view.ptmetadata . . . . . ... ... ... ... ... 14
136 Sample foo_editpy . . . ... ... 15
137 Complex foo_view.ptmetadata . . . . ... ............ 15
138 ZSQLMethods . . ..o ovvot ot 16
139 Skin Changes . .. ... ... .. ... . ... .. .. 16
1.3.10 Placeful SKInObjects . . . . . . . . oovie e 17
1311 New FS-Stored TYPeS . . . . . oo 17
1.3.12 Atonement for YourSins . . . . . . ... ... 18
1.3.13 Allowing Modules Imports . . . ... ... ............ 18

14 Form Controller . . . ... ..ot 19
141 CMFFormController . . . . ... .................. 19
142 Dispatching /AcHONS . . . . ... ..o 19
143 Dispatching / Actions Q) 20
144 Dispatching / Actions (3)‘ ....................... 20
145 Dispatching /Actions (4) . . . . . .. oo 20
146 Dispatching /Actions (5). . . . . . oo oo 21
147 Example Dispatchiné ........................ 21
1.4.8 Controlled Scripts‘ .......................... 21
1.49 Example Controlled Script . . . . . ... .. ... .. ....... 22
1.4.10 Example Controlled Script: NOtCE . . oo oo e e 22
1411 Dispatcher for Our Scripﬂ ...................... 22
1.4.12 CMFFormController DOCS . . . . . . oo oot 23
1.4.13 Storing Definitions . . . . .. .. ... ... ... . ... . ... 23
1.4.14 Storing Actions/ValidationsonFS . . . .. ... ... .. ... .. 23
1415 Stored onTool . . . . oo 23
1.4.16 FormController Types . . . .. oo oo 24

15 Skinning PIONE .« © o oot e 25
15.1 Possibilities for Skinning . . . .. ........ ... ... .. 25
152 base_properties Site . . . . ... ..o oL 25
153 CSSSKININgSite . . . . . .o oo 25
154 Integration Site: Public. . . . . ... ... ... ... . ... .. 25
155 Integration Site: Private . . . . . ... ... ... ... ...... 25




CONTENTS CONTENTS
15.6 Replacement Site: PUbliC. « o oo 25
15.7 Replacement Site: Private . . .o 26
1.5.8 CSS Skinning Site: Valties . . . ooo 26
159 Skinning Practice: IntegrationJ .................... 26
1.5.10 Skinning Practice: Replacement . . . ... ... ... ... ... 26
1.5.11 Useful Plone CSSTtEMS . .« « v v v v ovee e e e 27
1.5.12 Useful Plone CSSStyles . . . ... ... oovvioo. .. 27

1.6 Version COntrol . . . . . oo vvv e 28
1.6.1 Source Code Control . . . . . ..o 28
1.6.2 Version Control . . . . oo v 28
1.6.3  Subversion in 3 Minutes: Starting‘ ................. 29
1.6.4 Subversion in 3 Minutes: Updating‘ ................ 29
1.6.5 Subversion in 3 Minutes: Check-In . . . . . . ... ........ 29
1.6.6 Subversion in 3 Minutes: History . . . . ... ........... 29
1.6.7 Subversion Under Windows . . . . .. ... ........... 30
1.6.8 Learning More About SUbVerSion . . . ..ot 30
1.69 Tips for Version Control . . . ... 31

1.7 Documentation . . . . ..o 32
171 DocumentationIdeas. . . . . . oo v v 32
1.7.2  Documentation Products . . . . .. . ... 32

1.8 Setup and Scaffolding . . . . .. ... ... ... o o L 33
181 ZODBDread . ............ooiiiiiiiii... 33
1.82 Throw OutYour ZODB . . . . .. ..., 33
1.83 Setup Scripts‘ ............................. 33
1.8.4 Setup Script: _init_.py‘ ....................... 34
1.85 Setup Script: CustomSetup.py‘ ................... 34
1.86 Setup Script: CustomSetup.pV‘ ................... 35
1.8.7 CallingSetup . .. ... ... ... ... . ... . .. . 35
1.8.8 GenericSetup‘ ............................. 36

1.9 Debuggingﬁ ................................... 37
191 ErrorLOg . . o o ovee 37
192 Output Debugging . . . . ... ........ .. ... ...... 37




CONTENTS CONTENTS
1.9.3 Limitations of Output Debugging . . .. ... ... ....... 37
1.94 Dropping toPDBManually . . . ... ... ... ......... 38
1.95 PDBin3Minutes . . . . . ... ...oooui 38
196 PDBin3Minutes () . . . o v vvve et 38
1.9.7 Disadvantages of PDB . o oot 39
1.9.8 ZEOOVEIVIEW . . . .o ooviii e 39
1.9.9 Creatinga ZEOServer . . . .. ... .. ... .. ......... 39
1.9.10 RunningaZEO Server . . . . . ... .. ... .. ......... 40
1.9.11 ZODBShell Basics . . . ... ooveee 40
1.9.12 ZODB Shell Examples . . . . . ... ................ 40
1.9.13 Transactions . . . . . v v v v e e e 41
1.9.14 Synchronizing Transaction . ... ................. 41
1.9.15 Limitations of ZODBShell . . . . . . .. ..o 41
1.9.16 Testing a Requesﬂ ........................... 41
1.9.17 Testing a Request Options . . . . ... ............... 42
1.9.18 Example of Testing Request‘ ..................... 42
1.9.19 WingIDE Overview . . . . . ... oovin e 43
1.9.20 Setting Up WingIDE . . . . .. ... ................ 43
1.9.21 Startingup WingIDE . . . . . . . ... ..o 43
1.9.22 Setupin ZMIfor WingIDE . . . . . . ... ............. 44
1.9.23 Sample of UsingWing . . . ... .................. 44
1.9.24 Useful Wing Features . . . .. ... ... ............. 44
1.9.25 Debugging File-System Python Scripts‘ .............. 44
1.9.26 Other Debugging Systems . . . . . .. ... .. ... ....... 45
1.9.27 Other Debugging Systems I . . . ... .............. 45

110 Testing . . . .. ... ... 46
1.10.1 Selenium OVEIVIEW . . . . v oo e 46
1.10.2 Selenium Concepts‘ .......................... 46
1.10.3 Selenium Locators . . . . . ... ... 46
1104 Selenium ACHONS . . . . . oo oo 47
1.10.5 Selenium Checks . . . . ..o oo 47
1.10.6 Selenium Form Checks . . . . o o v oo 47




CONTENTS CONTENTS

1.10.7 Selenium Text Checks . . . . o oo v e 48

1.11 Developing With Others . . . . ... ... ... .. ... ....... 49
1.11.1 YouHavea Laptop: Use . 49

1.11.2 Subversion for Sharing . . . .. ....... .. ... ... ... 49

1.11.3 Simple SandbOXeS . . . . oo 49

1.11.4 Snychronizing of Content . . . . .. ... ... .......... 50

1.11.5 More Information . . . . « v v oottt 50

1016 CREDITSAXE . o o oo e 51

2 Footnotes 52




1 BEST PRACTICES FOR PLONE DEVELOPMENT

1 Best Practices for Plone Development



1.1 Introduction 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.1 Introduction

1.1.1 Handouts and Examples

e http://temp.joelburton.com/symposium

1.1.2 Why Do We Need This?
e Our inspiration:

Between the idea
And the reality
Between the motion
And the act

Falls the Shadow

T.S. Eliot, The Hollow Men

1.1.3 Safety

e Constancy and Fortitude

1.1.4 Documentation

e Truth and Unity


http://temp.joelburton.com/symposium

1.1 Introduction 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.1.5 Re-Usability

e Mercy and Clemency

1.1.6 Streamlined Development

e Virtuous Example



1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2 Products

1.2.1 Concept

e Build products for each major feature

For every feature of the site that might be re-used in another site, build a
product for this. For example, I recently wanted a Plone site that allowed
Plone to use the “sent to friend” feature for any page, based on URL, not just
based on Plone content. This only required changing 3 skins from CMFPlone,
and could have been customized for this site. Instead, I chose to separate it
out to the product SendToURL, allowing me to add this to any site instantly.
And, if I want to customize these skins further for another site, I can do so.

e Build a site product for site customization

For the site itself, build a “site product” to hold, at the very least, the setup
scripts, graphics, skins, etc. Keep this information, which is very site-specific,
from the features.

e Avoid disconnected ExternalMethods, scripts, etc.

ExternalMethods or other kinds of page templates or scripts that are hanging
out in your ZODB end up being disconnected and hard to maintain. Make
them part of your feature products, or if they’re only for the site itself, part of
your site product.

1.2.2 Products

e Each product contains

— Classes of content types
— Skin folders

— Installation scripts

10



1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2.3 Framework

e Ordinary setup:

__init__.py
config.py
content/
__init__.py
YourClass.py
skins/
productname/
class_view.pt
class_edit.py
Extensions/
Install.py
YourExternalMethod.py
doc/
YourDocumentation. txt
VERSION. txt

1.2.4 Framework: config.py
¢ Anything being shared among other scripts

— Common import area

1.2.5 Framework: content/

¢ Contains all new content types
— Usually Archetypes-based

e __init__.py herejustloads types

Many existing products use the directory name "types’ for this, but this has a conflict
with the python built-in types.

11



1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2.6 Framework: skins/

e Contains the skin folders
— Not the skins directly

e Skin folder convention is lower-cased, no-space version of product name

1.2.7 Framework: Extensions
e Install.py script install product
— Detailed later
e External methods for this product

— Works same as site-wide external methods (in instance Extensions)
— Except “Module name” includes Product

* eg, YourProduct.ExternalMethodFile

1.2.8 Framework: doc/
e Documentation directory

¢ Not used by Plone

1.2.9 Framework: VERSION.txt
e Should contain just version number (“1.0.1”)
e Shown in Plone control panel

e Easy way to tell what version is installed

12



1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2.10 Framework: _ init_.py
e Registers product
e Registers skin folders

e Calls content/__init__.py (which registers types)

1.2.11 Site Product Overview

e Conceptual container for site customization/skins

- eg, PressRelease product is standard

— On parks site, different appearance is in custom skins
e Generallly just contains skins, not types
— Unless simple and site-specific

e Make the highest skin path (other than custom)

1.2.12 ArchGenXML
e Turns UML data to AT classes

— Quick RAD system for building Archetypes
— Can use even without knowing UML

— Can round-trip
e Creates entire package

— Installers
— Initializers

— Classes

13



1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2.13 UML
e Good open source Java-based UML editors

- ArgoUML is entirely Open Source

— PoseidenUML has a community edition that is free

e O'Reilly’s Learning UML is a good introduction

1.2.14 Converting UML

e Save diagram to compatible format
- XM]I, .zargo, .zuml
e Run ArchGenXML.py over it:
$ python ArchGenXML.py your.xmi ProductName
e Use experimental web server

— http://uml.joelburton.com
— Only accepts XMI files

1.2.15 ArchGenXML Tips

e Don't try to set field types, required, etc.

— Unless you like UML and the editor
— Easy to do this stuff in Python

e Don't try to use UML diagram from one program in another

— It doesn’t always work

14


http://uml.joelburton.com

1.2 Products 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.2.16 Skeletor
° Skeletoﬁ “Product skeleton builder”

e Pluggable, so gurus can write new builders
e Not quite fully baked

e Keep your eye on this one!

15


http://plone.org/products/skeletor

1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3 Filesystem Skins

1.3.1 Through the Web Editing

e TEXTAREA boxes suck
e ExternalEditor makes it suck less
— ExternalEditor is best for content editing

Don’t underestimate the value of this. I use vim, which launches quickly
(so it can be used easily with ExternalEditor TTW), and which practically
every server already has installed (so I can use through ssh). However, even
considering that, I find myself almost twice as productive being able to work
in my exact editing environment, with my macros, scripts, paths, etc., already
set.

1.3.2 More Web Editing Problems
e No version control
— What did I do?
- Why did I do this?
— Especially for HTML/JS/CSS
e No grep, tags, etc.

grep and find are the godsends of working on the filesystem. Once you've
reacquainted yourself with them after years of ignoring them for the ZMI,
you’ll wonder what you were thinking.

— Refactoring extra-painful

16



1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.3 File-System Stored Skins
e File itself contains body
e .metadata file contains everything else

— Security
- Title

— FormController information

These are the accompany files that hold all the “other stuft”, titles, security set-
tings, proxy roles for PythonScripts, and more. These replace the .properties
files in earlier versions of the CMFE.

One common mistake is to customize a skin object file (say, "foo.py’) by
copying it to a new directory, but not copying any "foo.py.metadata’. Note
that the .metadata file must be in the same directory, so in this case, the
customized foo object is used, and it does not get the settings in its metadata
file. If this contained important things, like security or proxy settings, this
could be disastrous.

In CMFPlone, there are examples of all of the types that can be stored on the
filesystem including feature like proxy settings, titles, security settings. ‘grep’
is your friend here: ‘grep -r --include="*.metadata” proxy *" Will give you an
example of using a proxy setting in .metadafiles.

Inline emphasis start-string without end-string.

Inline emphasis start-string without end-string.

17



1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.4 Filenames Matter

Page Templates: *.pt

PythonScripts: *.py

Images: *.gif, *.png, etc.

DTML Methods: *.dtml

Extensions are not part of object Id, though

- So, foo.css.dtml gets ID foo.css

— Image extensions are kept

1.3.5 Sample foo_view.pt.metadata

e Not much:

[default]
title=Register a User

e Not required, either

18



1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.6 Sample foo_edit.py

¢ Binding info in top comments:

## Python Script "foo_edit"
##bind container=container
##bind context=context

##bind namespace=

##bind script=script

##bind state=state

##bind subpath=traverse_subpath
##parameters=new_body, attribA

context.doStuff(new_body, attribA)
return context()

1.3.7 Complex foo_view.pt.metadata
e Additional things:

[default]
title=Register a User
proxy=Manager, Anonymous

[validators]
validators = validate_registration

[actions]

action. failure=traverse_to:string:join_form
action.success=traverse_to:string:registered
action.prefs=traverse_to:string:prefs_users_overview

e Not required, either

19



1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.8 ZSQL Methods
e DTML comment holds SQL meta-stuff:

<dtml-comment>
connection_id: my_conn
arguments: fname lname

</dtml-comment>

SQL STATEMENT ...

There’s no example of a working ZSQLMethod shipped with CMFPlone, CMFDe-
fault, or CMFPlone. For a discussion of ZSQLMethods and an example of a
filesystem-stored ZSQLMethod, see http://plone.org/Members/pupq/reldb.

1.3.9 Skin Changes
e Only visible during DEBUG mode

— Set in zope.conf

— Leave on for development!
e Otherwise must restart Zope
— Or refresh product in Control Panel

Refreshing products saves the time for Zope to restart, but there can be minor
side-effects that require a restart, anyway, depending on what the product
does.

There’s no harm try this and seeing it works, though. To do so, drop a file
in your product’s top directory called refresh. txt, then you can refresh the
product and see if this works.

Note that if you're using SpeedPack under debug mode, you'll see changes
to skin objects, as long as they don’t get copied from one directory to another.
However, if you customize a skin object to a new directory and are running
SpeedPack under debug mode, Zope has already cached the old location of
the skin object, and won’t use the new location version. Restart or use product
refresh to have Zope notice this.

20


http://plone.org/Members/pupq/reldb

1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.10 Placeful Skin Objects

e Goal: no skins or scripts in ZODB. Only config results and content.

Thatis, our end goal is that the only thing in the ZODB will be our actual contentish
objects and configuration settings made by scripts. All of our skins and all of our
scripts will be on the filesystem.

e What about “placeful skin objects”?

— Put stub object in ZODB
— Call skin object

Sometimes, it’s very helpful to have scripts or skins be placeful. For example, you
might have a different logo in different parts of your site, and a common Zope
practice for this would be to have ‘logo.jpg’ in the root of your site, and a different
one in /about’. However, this leaves a piece of skin in the site, and ruins our ability
to maintain it well. Better is to have the root folder and ’/about’ folder have a
property--say, logo_name, which tells us what logo to use in this area. Then, we
can keep all of these logos on the filesystem, and have achieved our goal of just
keeping the configuration part in the ZODB.

1.3.11 New FS-Stored Types

e Can create your own FS-stored types

If there are non-contentish objects you use often, it's worthwhile creating
the small script that will allow it to be stored on the filesystem. You can
look at the code in CMFCore for storing the existing types (PageTemplates,
PythonScripts, Files, etc.)

e 'FSExternalMethod’

An example of taking an existing Zope object type and creating a FS-stored
capable version of it. Taken from FileSystemSite.

— Useful for your Zope add-ons

21



1.3 Filesystem Skins 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.3.12 Atonement for Your Sins

e FSDump

Sometimes, it’s not possible to work on the filesystem. You may only have
access to a web browser or have created many existing skin objects in the
ZODB. FSDump will take existing skin objects and dump them out to the
filesystem.

— Dumps existing ZODB stuff to FS

— Need to write dumpers for your FS-Stored types.

If you've written custom FS-stored types, you'll have to write your own
Dump plug-in for this. This is quite easy to do--see the code in FSDump
for examples of how it dumps the basic types.

— At the very least--FSDump for backups

1.3.13 Allowing Modules Imports
e Documentation in $ZOPE/lib/python/Products/PythonScripts

e Example, in product __init__.py:
from AccessControl import allow_module, allow_class
allow_module(’zipfile’)

from zipfile import ZipFile
allow_class(ZipFile)

22



1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4 Form Controller

1.4.1 CMFFormController

e New form handling/dispatching system
e Provides “controller” of MVC paradigm

— Validation
— Dispatching

e More flexible than simple marshalling

1.4.2 Dispatching / Actions
e Template/Script

— Which script/template this affects

- eg “document_edit_form”
e Status

— What status this affects
— “success”, “failure”

- Can emit your own

23



1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4.3 Dispatching / Actions (2)
e Context

— What kind of object/context this work on

- eg “Document”, “News Item”
e Button

— What button name was pushed
- Allows “Ok”, “Cancel” buttons

1.4.4 Dispatching/ Actions (3)
e Action
— What happens next
e Argument

— Argument for action

1.4.5 Dispatching / Actions (4)
e Actions

— redirect_to: HTTP redirect to argument
+ eg “http://yahoo.com”
— redirect_to_action: HTTP redirect to action
+ eg “view”, “edit”
— traverse_to, traverse_to_action: same, but no redirect, just calls

+ Keeps request object

24


http://yahoo.com

1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4.6 Dispatching / Actions (5)

e Arguments

TALES expression

“string:http://www.yahoo.com”

“string:view”

or “python:”, or just path, of course

1.4.7 Example Dispatching
e Form friend_edit_form, should go to friend_edit

— Template: “friend_edit_form”
— Status: “success”

— Context: “Any” or “Friend”

A subtle difference. It’s possible that our friend_edit_form might be
used for just Friend portal types. It’s also possible that we re-use it for
CoWorker portal types. If we want the behavior to be the same, we can
keep this as “Any”. If we want to have different dispatching for the
two (perhaps coworker-editing needs a special coworker_edit script
that does things differently, we can specify “Friend” here and put in a
different action for “CoWorker”.

— Button: Any (unless you have cancel!)
— Action: “traverse_to”

- Argument: “string:friend_edit”

1.4.8 Controlled Scripts
e After validation what dispatching can go to
e Can use regular script

— Controlled can participate in dispatching

25



1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4.9 Example Controlled Script

e foo_edit Controlled Script:

try:

context.n = context.REQUEST.n
except:

state.set(new_status=’'failure’)
else:

state.set(

portal_status_message='n=

return state

+ n)

1.4.10 Example Controlled Script: Notice

e We get nn from context.REQUEST
— Could also get with script parameters
e Set status message as before

e return state required

1.4.11 Dispatcher for Our Script
e Script foo_edit should go to “view” action:

- Template: "foo_edit

— Status: “success”

- Context: “Any” or “Foo”

— Button: Any

— Action: “redirect_to_view”

— Argument: “string:view”
Don’t forget the string:!

26



1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4.12 CMFFormController Docs
e Included in package

— Excellent
— Examples here borrowed from there

1.4.13 Storing Definitions
e Stored on forms/scripts
e Stored on filesystem for FS skins/scripts

e Stored in portal_formcontroller tool itself

e Set in request object

1.4.14 Storing Actions/Validations on FS

e Stored in .metadata file for object:

[validators]
validators. [Type]. [Button] = vall, val2

validators.Event.Save = validate_event
validators..Save = validate_event
validators = validate_id, validate_event

1.4.15 Stored on Tool

e Useful for overriding standard/product skins/scripts

— Without having to customize skin/script

27



1.4 Form Controller 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.4.16 FormController Types
e Controller Page Template: *.cpt
e Validators: *.vpy
e Controlled Scripts: *. cpy
e .metadata files can contain Form Controller actions/validator info

— As documented in FormController section

28



1.5 Skinning Plone 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.5 Skinning Plone

1.5.1 Possibilities for Skinning
Change only base_properties Easiest, still looks like Plone

Change CSS Requires CSS skills, not Plone-specific
Integrate HTML with main_template Complex, flexible

Separate CMS from retail view Can be easy, can be fastest

1.5.2 base_properties Site

1.5.3 CSS Skinning Site

1.5.4 Integration Site: Public

1.5.5 Integration Site: Private

1.5.6 Replacement Site: Public

29



1.5 Skinning Plone 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.5.7 Replacement Site: Private

1.5.8 CSS Skinning Site: Values
e Easy to maintain
e Benefit from Plone’s accessibility
e Requires some design flexibility

— Deep knowledge of CSS may be needed

— Firefox WebDeveloperExtensions is your friend!

1.5.9 Skinning Practice: Integration
e Takes longer
— Results in complex mix of Plone-isms and client HTML
o Keeps excellent editor/user experience
— No sudden shifts in site
¢ Slower for viewing than replaced

— Standard Plone Ul is slow

1.5.10 Skinning Practice: Replacement
e Easy to accomplish
e Can be hard for users to understand
— Best for small # of content editors

¢ Requires inclusion of global_defines material

30



1.5 Skinning Plone 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.5.11 Useful Plone CSS Items

e #portal-top: logo, user bar, top tabs

#portal-globalnav: top tabs

#portal-personaltools: user bar

#portal-breadcrumbs

#portal-column-one, -two: left, right slots

#content: middle of O wrap

— .documentContent: inner of content (no margins)

1.5.12 Useful Plone CSS Styles

e #portal-footer

#portal-colophon

.portalMessage: orange announcements

.documentByline

table.listing

.discreet: quiet text (gray, small)

31



1.6 Version Control 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.6 Version Control

1.6.1 Source Code Control

e (ritical for teams

If your team is larger than one, source code management is essential. It will
allow your team to work together more quickly, with much less “stay out of
this; I'm working on it”, and much less “I'm not sure what this person was
doing here”. Hands-down, the successful implementation of SCM will be the
biggest win for your team’s coordination and performance.

e Helpful for code archaeology

When faced with old code of your own, or someone else’s code, seeing the
log messages and way it was built is often incredibly helpful in finding bugs
and maintenance.

e Branches

Often, you'll work for a day or two on a new idea, only to figure out that it
isn’t working out, you've screwed up, and you can’t remember all the billions
of things you changed while on a tear to try out this new idea. This is exactly
what branches in a version control system are meant to manage.

Learn how to use branches for your VC system. They're easier that even in
Subversion.

1.6.2 Version Control
e Subversion recommended

- Similar to CVS, but redesigned from ground-up
— Commits are for an entire changeset, not just files
— Easier to understand relationship of commits

- Sane API for utilities

e Zope isn’t involved at all w/version control

32



1.6 Version Control 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.6.3 Subversion in 3 Minutes: Starting

e svn co http://user:pass@repos/product

- Sometimes, this may be svn:// or https://

— Creates directory of checked-out files

1.6.4 Subversion in 3 Minutes: Updating
e svn up [files]

— Update this directory to repository
— If [files] not given, do all
— Do this often!

1.6.5 Subversion in 3 Minutes: Check-In
e svn ci [files]

— Checks in changes
— If [files] not given, do all

— Calls up editor to enter comments

1.6.6 Subversion in 3 Minutes: History
e svn log [files]

— Shows history of changes

— Normally specify one or two files

33



1.6 Version Control 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.6.7 Subversion Under Windows
e TortoiseSVN makes this a snap
— Easy enough for non-technical users

At first, the task of having non-developers use your version control system
seems daunting. I've found, however, the non-developers can love it when
they realize they can easily work off files on their computer and sync it with the
server, and they understand that they don’t have to “worry” about mistakes.
It’s all in how you sell this idea.

- SCM is not just for coders!

1.6.8 Learning More About Subversion
¢ Understanding differences between files
e Merging and resolving conflicts

e Starting new branches and settings tags

All of these are covered in the excellent, free Subversion Book?.

34


http://svnbook.red-bean.com/

1.6 Version Control 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.6.9 Tips for Version Control

e Log messages are your friend.
— So don’t treat them like your enemy.

e Refer to collector items in messages.

It’s good to pick a simple, standard syntax for this. I frequently use the phrase
“Collector #123”, and can build web tools that allow you to jump right to that
bug to see the details of what you were tryin to fix. This helps close the loop
on why you were making these changes in the first place.

- Focus on why, not what.

Of course you were editing login_form’. We can see that. Why, though,
did you make those changes? What was broken? What client request
does this address? Thisis the information you’ll want later. Explanations
of what you're doing should be in the code as comments, anyway.

— Check in “pristine” copy as first copy.

If you want to customize Plone’s ‘login_form’, for example, don’t copy
it to your site product directory and immediately start hacking on it.
Instead, copy it to your directory, check it in right then, in its pristine
form, then start hacking away. Now, you've solved two problems: (a)
it’s trivial for you to diff revision 1 and revision 2 of this file to find out
why you were customizing it in the first place, and (b) when Plone is
upgraded and there are changes to the shipped ’login_form’, it’s much
easier to incorporate those, since you know exactly how ’login_form’
looked when you started, without having to dig around and find that
version.

This takes only a tiny bit of discipline and really pays off.

+ Hasier to understand why you customized a CMFPlone skin.
e Keep a CHANGES. txt file for explaining larger changes in context
e Always check in working code

- Or put it on a branch

35



1.7 Documentation 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.7 Documentation

1.7.1 Documentation Ideas

e Consider using interfaces
e Definitely use your docstrings

e Alpha-test your documentation

1.7.2 Documentation Products

o DCWorkflowGraph
e DCWorkflowDump
e EpyDoc

e ArchGenXML

36



1.8 Setup and Scaffolding 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.8 Setup and Scaffolding

1.8.1 ZODB Dread

¢ You know the feeling:

— How the hell am I going to get this all back?

Everyone that’s worked with Zope for more than a few months has encountered
“ZODB Dread”: that awful, sinking feeling that you’ve sunk a chunk of your very
life into a single, binary-format object database, with no hope you’ll ever be able
to remember all the scripts, skins, properties, and settings you've put into it. You
konw that if this puppy ever gets badly corrupted, you're going to be in a world of
hurt.

This is what we want to avoid.

1.8.2 Throw Out Your ZODB

e Throw out your ZODB. It’s liberating. - Kapil Thangavelu, (hazmat on #plone)
ObjectRealms

1.8.3 Setup Scripts

e Useful way to keep track of config info on disk
— Make calls via API
e New setup directory in product:

setup/
__init__.py
CustomSetup.py

37



1.8 Setup and Scaffolding 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.8.4 Setup Script: __init__.py
e Boilerplate:

from Products.CMFPlone import MigrationTool
from Products.MyProduct.setup.

CustomSetup import CustomSetup
MigrationTool.registerSetupWidget (CustomSetup)

1.8.5 Setup Script: CustomSetup.py
e Imports and function:

from Products.CMFPlone.setup.SetupBase \
import SetupWidget

from zLOG import INFO

from Products.Archetypes.utils \
import OrderedDict

def Americanize(self, portal):
sprops=portal .portal_properties.site_properties
sprops._updateProperty(
’localTimeFormat’,’%B %e, %Y’)
return "Set American dates."

functions = OrderedDict()
functions[’Americanize’] = Americanize

38



1.8 Setup and Scaffolding 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.8.6 Setup Script: CustomSetup.py
e Boilerplate:

class CustomSetup(SetupWidget):
type = ’MyProduct Setup’
description="Setup for ..."

def available(self): return functions.keys()

def installed(self): return []

def addItems(self, fns):
out = []
for fn in fns:
out.append((functions[fn]
(self, self.portal),INF0))
out.append(
(’Function %s applied’ % fn, INFO))
return out

1.8.7 Calling Setup

e portal_migrations, Setup
e Can extend to list only un-applied setup, etc.
— Helpful when doing laptop/dev server sync
e Better: create a “customization policy” that spawns fully-customized site

— Samplex product provides example of customization policy

39



1.8 Setup and Scaffolding

1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.8.8

GenericSetup

(Was CMFSetup)

Framework for inspecting ZMI tools and writing state

Can import state to move back to snapshot

Not quite fully-baked

— Not all Plone tools are supported

— No easy way to perform some config changes

— Can't easily script creation of sample content

Keep a watch on this!

40



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9 Debugging

1.9.1 Error Log

e Location for details on error messages

e Accessible through Plone interface (also in ZMI)

e While developing, remove Unauthorized and NotFound filters

1.9.2 Output Debugging

e print "foo=%s" % value
e plone_log(summary, text)
e raise "foo!", values

— Shows & stores REQUEST obj

— Can make conditional on someting in request

1.9.3 Limitations of Output Debugging
e Output statements in many places
- Have to go back and clean up later?

e Few “aha!” moments

41



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.4 Dropping to PDB Manually
e Run Zope in foreground mode
— zopectl fg
e Drop into pdb at right place:

import pdb
pdb.set_trace()

1.9.5 PDB in 3 Minutes
e h: help
e s: step, n: next
e r: return, c: continue

e w: frames

1.9.6 PDB in 3 Minutes (2)
o I: list
e p: print, pp: pretty-print, whatis: what-is-object
e b: breakpoint:

b [file]:lineno | [obj.]function [, condition]

42



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.7 Disadvantages of PDB
e Same process as main Zope
- You're holding it up!
e Can't get to pdb from PythonScripts
— But can change this easily
e Must restart for code changes in products

e Not easy to use with Windows

1.9.8 ZEO Overview
e ZEO

— Object server (ORB)
- Zope server is ZEO client

— Allows multiple Zope clients

e Use ZEO all the time

1.9.9 Creating a ZEO Server

e Script to create new ZEO server:

$SOFTWARE_HOME /bin/mkzeoinstance.py home [port]
— port is port ZEO server runs on

e Edit $INSTANCE_HOME/etc/zope.conf

— Comment out first zope_db main; uncomment second
— Port should be set to ZEO server

— Move existing Data. fs from var to zeo/var

43



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.10 Runninga ZEO Server

e zeoctl start
e zopectl start (or zopectl £fg)

e Don’t have to restart ZEO for Zope changes

1.9.11 ZODB Shell Basics

e zopectl debug
e app is the root of the ZODB

— Can walk to any object

— No security checks or restrictions

1.9.12 ZODB Shell Examples

e For example:

app.plone.objectIds()
app.plone.portal_catalog(Title="Hello")
app.plone.Members. joel.doc.attrib=2

e Inspection: dir()

— Need to control it’s size

44



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.13 Transactions
e Automatically discarded at end of session
e Discard now:
get_transaction().abort()
e Commit now:

get_transaction().commit()

1.9.14 Synchronizing Transaction

e Sync your transaction to the most up-to-date:

app._p_jar.sync(Q)

1.9.15 Limitations of ZODB Shell
e Not a real request
— Missing REQUEST, RESPONSE, user, etc.

e Not really a user

1.9.16 Testing a Request
e Real request through ZPublisher:

import Zope
Zope.debug(’ /path/to/object’)

e Returns output

e Happens in real, separate transaction

45



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.17 Testing a Request Options
e d=1: drop into pdb and debug request

e pm=1: (postmortem) drop into pdb on failure

t=1: output timing

e u="username:pass’: authenticate request as user

extra={"key’:"value’...}: add to REQUEST object

p="file.prof’): creating Python profile data

1.9.18 Example of Testing Request
e Debug Membership Tool’s listMembers method:

pdb> from Products.CMFPlone.MembershipTool
import MembershipTool

pdb> b MembershipTool.listMembers
Breakpoint ... /CMFPlone/MembershipTool.py:247
pdb> c

> .../MembershipTool.py(247)1listMembers()

46



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.19 WingIDE Overview
e Commercial Python IDE/debugger
e Nice editor/IDE
— ButIdon't use it for that
e Free if you only use to develop open source
- But definitely worth paying for

e Personal version is probably fine

1.9.20 Setting Up WingIDE
e Install WingIDE (Windows, MacOS, Linux versions)

— Does not have to be same machine as Zope server
e Install WingDBG@ product on Zope server
- Patching CMFCore and Zope no longer needed

1.9.21 Starting up WingIDE
e Enable Passive Listening

— Preferences > Debugger > External/Remote

— Only have to do once
e Optionally create project for site

— Easier to navigate among files

47


http://wingware.com/downloads/wingide/2.1.0/zope

1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.22 Setup in ZMI for WingIDE
e Visit Control Panel
e Turn on debugger and connect to IDE
e Visithttp://localhost:50080/plone and login

o All traffic through 50080 is monitored by Wing

1.9.23 Sample of Using Wing

e Open Products/CMFCore/CatalogTool
e Add breakpoint to CatalogTool.searchResults

e In browser for port 50080, search site

1.9.24 Useful Wing Features

e Stack data: interactive stack variables

Debug I/O: Console output

Debug probe: interactive Zope shell

Python shell: normal Python shell

Watch: Variables to watch

1.9.25 Debugging File-System Python Scripts

¢ Only system that supports feature

e Works the same as product code debug

48



1.9 Debugging 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.9.26 Other Debugging Systems

e Monitor server

— Outdated by ZEO
— Documented in $SOFTWARE_HOME /docs/DEBUGGING. txt

e ActiveState Komodo

— Excellent Python debugger/IDE
— Poor Zope support

1.9.27 Other Debugging Systems II

e Boa Constructor

— Open source IDE/debugger
— Can be a tricky install

— Interesting featureset but less stable/mature

49



1.10 Testing 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.10 Testing

1.10.1 Selenium Overview

¢ In-browser, functional testing
e Tests are straightforward to write

— Even “client-safe”

Running tests is esay and graphical

Uses JavaScript

1.10.2 Selenium Concepts

e Actions
o Checks

e Element Locators

1.10.3 Selenium Locators

e Identifier (id then name)
e DOM

e XPath

e Link Text

— requires prefix

50



1.10 Testing 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.10.4 Selenium Actions
e open
e click
e type
e select
e And more

- Including “... AndWait” versions

1.10.5 Selenium Checks

e assert vs. verify

— Assert stops the test on failure
e verifyLocation

— Are we at the right URL
e verifyTitle

e verifyElementPresent

1.10.6 Selenium Form Checks

e verifyValue
— Checks value of INPUT
e verifySelected

— Checks value of SELECT

51



1.10 Testing 1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.10.7 Selenium Text Checks

e verifyText

— For a particular node, exact match
e verifyTextPresent

— Anywhere on page

e verifyTextNotPresent

52



1.11 Developing With Others1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.11 Developing With Others

1.11.1 You Have a Laptop: Use It
It’s not a $2000 ssh client

Faster edit/test/debug cycle.

e No wires, no wireless

Easier to work privately

1.11.2 Subversion for Sharing
e Work on your laptop

When at the “right point”, check-in your code

‘rsync’ to your sandbox on server

Emergency changes on server can be handled, too

1.11.3 Simple Sandboxes

e Each developer gets a skin folder in your product
e rsync your skin changes to your skin folder

e Each developer has their own skinpath, with their skinfolder as most cus-
tomized

Developers can switch from their sandbox skinpath to common skinpath.

53



1.11 Developing With Others1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.11.4 Snychronizing of Content
e Create starter content in setup scripts
e Create starter content in ".zexp’ files
— Can’t change, though
e Use "ZSyncer’ to sync from one server to another
e Use AT "XMLTool” or "Marshall” to export/import XML of content

— GenericSetup will help here in the future

1.11.5 More Information

e Examine good products

— PloneHelpCenter (straightforward, AT product)
— SimpleBlog (AT product with TTP prefs, etc)
— Samplex (scaffolding, customization policies)

— listen (uses of Five/z3 technology)
e My Site' tutorial

e RichDocument tutorial

54


http://www.neuroinf.de/PloneDevTutorial

1.11 Developing With Others1 BEST PRACTICES FOR PLONE DEVELOPMENT

1.11.6 CREDITS.txt
e Kapil Thangavelu
— Inspiration to throw out my database and much more
e Rob Miller
— Excellent Samplex product
e Ben Saller
- Many excellent hints
e Alec Mitchell

— listen for examples on Five

55



2 FOOTNOTES

2 Footnotes

! http://www.neuroinf.de/PloneDev Tutorial

2 http://svnbook.red-bean.com/

3 http://plone.org/products/skeletor

4 http://wingware.com/downloads/wingide/2.1.0/zope

56


http://www.neuroinf.de/PloneDevTutorial
http://svnbook.red-bean.com/
http://plone.org/products/skeletor
http://wingware.com/downloads/wingide/2.1.0/zope

	Best Practices for Plone Development
	Introduction
	Handouts and Examples
	Why Do We Need This?
	Safety
	Documentation
	Re-Usability
	Streamlined Development

	Products
	Concept
	Products
	Framework
	Framework: config.py
	Framework: content/
	Framework: skins/
	Framework: Extensions
	Framework: doc/
	Framework: VERSION.txt
	Framework: __init__.py
	Site Product Overview
	ArchGenXML
	UML
	Converting UML
	ArchGenXML Tips
	Skeletor

	Filesystem Skins
	Through the Web Editing
	More Web Editing Problems
	File-System Stored Skins
	Filenames Matter
	Sample foo_view.pt.metadata
	Sample foo_edit.py
	Complex foo_view.pt.metadata
	ZSQL Methods
	Skin Changes
	Placeful Skin Objects
	New FS-Stored Types
	Atonement for Your Sins
	Allowing Modules Imports

	Form Controller
	CMFFormController
	Dispatching / Actions
	Dispatching / Actions (2)
	Dispatching / Actions (3)
	Dispatching / Actions (4)
	Dispatching / Actions (5)
	Example Dispatching
	Controlled Scripts
	Example Controlled Script
	Example Controlled Script: Notice
	Dispatcher for Our Script
	CMFFormController Docs
	Storing Definitions
	Storing Actions/Validations on FS
	Stored on Tool
	FormController Types

	Skinning Plone
	Possibilities for Skinning
	base_properties Site
	CSS Skinning Site
	Integration Site: Public
	Integration Site: Private
	Replacement Site: Public
	Replacement Site: Private
	CSS Skinning Site: Values
	Skinning Practice: Integration
	Skinning Practice: Replacement
	Useful Plone CSS Items
	Useful Plone CSS Styles

	Version Control
	Source Code Control
	Version Control
	Subversion in 3 Minutes: Starting
	Subversion in 3 Minutes: Updating
	Subversion in 3 Minutes: Check-In
	Subversion in 3 Minutes: History
	Subversion Under Windows
	Learning More About Subversion
	Tips for Version Control

	Documentation
	Documentation Ideas
	Documentation Products

	Setup and Scaffolding
	ZODB Dread
	Throw Out Your ZODB
	Setup Scripts
	Setup Script: __init__.py
	Setup Script: CustomSetup.py
	Setup Script: CustomSetup.py
	Calling Setup
	GenericSetup

	Debugging
	Error Log
	Output Debugging
	Limitations of Output Debugging
	Dropping to PDB Manually
	PDB in 3 Minutes
	PDB in 3 Minutes (2)
	Disadvantages of PDB
	ZEO Overview
	Creating a ZEO Server
	Running a ZEO Server
	ZODB Shell Basics
	ZODB Shell Examples
	Transactions
	Synchronizing Transaction
	Limitations of ZODB Shell
	Testing a Request
	Testing a Request Options
	Example of Testing Request
	WingIDE Overview
	Setting Up WingIDE
	Starting up WingIDE
	Setup in ZMI for WingIDE
	Sample of Using Wing
	Useful Wing Features
	Debugging File-System Python Scripts
	Other Debugging Systems
	Other Debugging Systems II

	Testing
	Selenium Overview
	Selenium Concepts
	Selenium Locators
	Selenium Actions
	Selenium Checks
	Selenium Form Checks
	Selenium Text Checks

	Developing With Others
	You Have a Laptop: Use It
	Subversion for Sharing
	Simple Sandboxes
	Snychronizing of Content
	More Information
	CREDITS.txt


	Footnotes

